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Introduction 
Electricity has a major impact on every aspect 
of our socioeconomic life. It plays a vital role in 
the economic, social, and political 
development of any nation (Energy 
Commission, Nigeria 2009). Electricity is the 
most popular and commonly used source of 
energy in the world today. One significant 
pattern that has observed is that as the 
country’s population grows, so does the 
demand of power (Nkalo et al., 2018). Poor 
transmission capacity, generation, and poor 
maintenance culture have also contributed 
greatly to the inadequate supply of electricity 
to the Nigerian people. This situation has no 
doubt impacted negatively both socially and 
economically. Technically speaking, one of the 
key causes of inadequate power supply is 
increased transmission line active power 
losses. High power losses in the transmission 
lines contribute greatly to network instability, 
low voltage profile, and network insecurity. 
This challenge can be addressed by building 
new power generation stations and 
transmission lines. However, the construction 
of new transmission systems is hindered by 
many factors such as ecological 
considerations, financial difficulties, and the 
unavailability of space in overpopulated areas 
(Ahmad et al., 2014). Instead of building a new 
power system network, the total transmission 
line active power loss can be reduced by 
introducing effective power transmission line 
compensators like interline power Flow 
compensators at the right locations and at the 
optimum size. This reduction in active power 
loss will also provide an economical business 
solution to the deregulated power market 

(Pandey and Chaitanya, 2012; Ahmad et al., 2014) and also enhance the reliability of power supply in the country. 
Available transfer capability (ATC), a measure of the transfer capability remaining in the physical transmission 

Nigeria has since suffered from poor electric generation, transmission 
and distribution, despite the fact that Nigeria has the largest 
population in Africa. This situation has impacted negatively on 
businesses in Nigeria which often rely on off-grid generation to run 
their businesses. Real power losses in the transmission lines have been 
identified as one of the country's key causes of inadequate power 
supply. Against this backdrop, there is therefore an urgent need to 
address the problem of real power losses in the lines so as to boost 
the meager power currently available at the national grid. In view of 
this, this study seeks to minimize real power losses in the transmission 
lines of the Nigerian 47-bus transmission network using an Artificial 
Neural Network (ANN) based Interline Power Flow Compensator 
(IPFC). Thus, the Nigerian 47 bus transmission network was modeled 
in Simulink/PSAT and characterized using load flow analysis. 
Continuation Power flow (CPF) was used to identify the weak buses in 
the network and the result showed that five (5) buses fell below the 
acceptable voltage level of 0.95pu≤V≤1.05. In addition, the total real 
power loss on the network was obtained. ANN optimal size predictor 
and ANN optimal locator were created and trained using ANN fitting 
tool in Simulink. The trained AI agents were then converted to 
Simulink models and connected to the test network to ascertain the 
optimal size(s) and location(s) of the Interline Power Flow 
compensator (IPFC) modeled to minimize real power losses in the 
network. The simulation was carried out on the integrated network 
with optimally sized ANN-based IPFCs deployed at the optimal 
location. The result showed that the total real power losses were 
reduced from 0.5182pu to 0.21186pu and the magnitude of the 
voltage profile of the five weak buses normalized within the IEEE 
acceptance range of 0.95pu≤V≤1.05pu. This implies that IPFC 
optimized with ANN will be significantly viable in minimizing real 
power losses for improving the voltage profile and security of the 
Nigerian 47-bus transmission network 
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330kv Power Grid Network; Artificial Neural Network; Interline Power 
Flow Compensator 
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network for further commercial activity (NERC Report, June 1996) depends on active power losses. Reducing active 
power losses in the line will enhance network ATC thus increasing the level of power that can be delivered from the 
source area (slack bus) to the sink area (load bus systems). 

Against this backdrop, this study focuses on active power loss minimization using IPFC for improved performance of 
the Nigeria 330kV power transmission grid network. 

Literature Review 

Electric Power Losses 
Electric power has to be moved from the generation place to the consumer’s place through some wires for 
consumption. Some of the electricity that is generated along the route is lost for a variety of reasons. Whether this 
loss is at its lowest possible range is the question of modern energy efficiency issues. To make it easier to investigate 
losses it is helpful to divide electric system losses into different categories. A common classification is to use two 
categories; technical losses and non-technical losses (Mohammed et al., 2002). 

As power is transferred from one point to another, some of the power is dissipated along the route due to the 
natural properties of the conductors and equipment the power is carried upon. Technical losses incurred over 
individual elements, shorten the element's operational life on the one hand and dictates greater dimensioning of 
the power system on the other hand. There are many ways to analyze technical losses. 

Depending on their origin, technical losses can be divided into resistive, leakage, and corona losses. Resistive 
(copper) losses are the I^2 R losses that are inherent in all conductors because of the finite resistance of the 
conductors. The leakage losses are losses owing to the finite resistance of the insulation materials. Corona losses 
are caused by partial discharges in the air surrounding overhead lines. The air molecules become ionized and 
conductive as the voltage level is increased. 

The ionization generates light, audible noise, radio noise, conductor vibration, and ozone and causes a dissipation 
of energy that result in line losses. Heavy rain or wet snow results in a dramatic increase in corona due to droplets 
clinging to conductors which act as sources of point of discharge (Gustafson and Baylor, 1998). One common 
classification of technical losses is to use the categories to be (Load losses) and Fixed (No-load losses). This 
classification method is useful when studying the dependence of losses on power flow. 
 
Interline Power Flow Controller (IPFC) 

The Interline Power Flow Controller (IPFC) consists of two series converters in different line that is inter-connected 
by a common DC link. It is a device that provides a comprehensive power flow control for a multi-line transmission 
system and consists of multiple DC to AC converters, each providing series compensation for a different transmission 
line. The converters are connected together to their DC terminals and connected to the AC systems through their 
series coupling transformers. With this arrangement, it provides series reactive compensation in addition any 
converter can be controlled to supply active power to the common DC link from its own transmission line. Unlike 
other FACTS, it controls and compensates power flow in a multiple-line transmission system as shown in figure 1. 
 

 
Figure 1: Interline Power Flow Controller Configuration (Source: Yuan, 2010) 

Both converters have the capacity to provide a series of compensation on their line as an SSSC. The converters can 
provide active compensation just as they can exchange active power through a common DC link. This allows the 
controller to provide both active and reactive compensation for the transmission line lines and thereby optimize the 
operation of multi-line transmission systems. 
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Artificial Neural Network ANN 

ANNs are computational techniques that try to obtain a performance similar to a human’s performance when 
solving problems. An ANN can be seen as a union of simple processing units, based on neurons that are linked to 
each other through connections similar to synapses. These connections contain the “understanding” of the network 
and the patterns of connectivity express the objects represented in the network. The understanding of the network 
is gotten through a learning process where the connections between processing units are varied through weight 
changes. ANN is an efficient alternative for problem solutions where it is possible to obtain data describing the 
problem behavior but a mathematical description of the process is impossible. ANNs have several attractive 
characteristics. The capacity to adapt to system data and the facility to perform new tasks are some of the 
advantages of these techniques. ANNs are parallel structures that usually need small amounts of memory and 
processing time. ANN scans store knowledge in a distributed fashion and consequently have high fault tolerance. 
Learning algorithms used to train ANN can be supervised or unsupervised. In supervised learning algorithms, 
input/output pairs are furnished and the connection weights are adjusted with respect to the error between desired 
and obtained output. In unsupervised learning algorithms, the ANN will map an input set in state space by 
automatically changing its weight connections. Supervised learning algorithms are commonly used in engineering 
processes because they can guarantee the desired output (Arturo and Phadke, 2003). 

Review of Related Works 

Karthik and Chandrasekar (2012) presented the IPFC's main features and limitations while controlling the power 
flow. In order to observe these advantages and disadvantages, a mathematical model based on the d-q orthogonal 
coordinates was developed. A 3-phase transmission line model associated with the converter station was developed 
and incorporated into an IPFC model using SIMULINK. The results indicate that IPFC improves the system. Alievelu 
et al. (2011) reported the investigation on the development of the steady-state model, the dynamic nonlinear 
mathematical model of the power system installed with the IPFC for stability studies, and the linearized extended 
Phillips Heffron model for the design of control techniques to enhance the damping of the lightly damped oscillations 
modes. In this context, the mathematical models of the single-machine infinite bus (SMIB) power system and multi-
machine power system incorporated with IPFC were established. The controllers for the IPFC were designed for 
enhancing the power system stability. The eigenvalue analysis and nonlinear simulation studies of the investigations 
conducted on the SMIB and Multi-machine power systems installed with IPFC demonstrate that the control designs 
are effective in damping the power. 

Reddy et al. (2016) noted that a power flow controller (IPFC), is the most versatile device used for controlling power 
flows in multiple transmission lines. When the load on the transmission line is drastically increased the power losses 
and voltage deviation increase in the system leading to line outages and the power system network may become 
unstable. Thus, they proposed an algorithm for the IPFC optimal location. The proposed algorithm improved voltage 
stability under the overloaded line outage contingency in a power system network. The transmission line outages 
were calculated and ranked on the basis of their performance index. The proposed method was tested for the IEEE-
30 bus system by using MATLAB software and the results were compared with an SVC device for the same 
configuration of the network. Akhilesh et al. (2011) investigated the use of IPFC, which they understand to be dc/ac 
converters linked by common DC terminals, in a DG-power system from an economic perspective. They discovered 
that; because of the common link, any inverter within the IPFC is able to transfer real power to any other and thereby 
facilitate real power transfer among the lines of the transmission system. Since each inverter is able to provide active 
compensation, the IPFC is able to carry out an overall real and reactive power compensation of the total transmission 
system. This capability makes it possible to equalize both real and reactive power flow between the lines, transfer 
power from overloaded to under-loaded lines, compensate against reactive voltage drops and corresponding 
reactive line power, and increase the effectiveness of the compensating system. 

Methodology 

The method adopted in this research entails characterizing the test network (47-bus Nigeria 330kV) first. This is 
achieved through load flow analysis performed on the network using PSAT as a tool. With the help of load flow 
analysis, the network parameters (the magnitude of voltage and its phase angle, real and reactive power loss, and 
real and reactive power injected into the system) at normal operating conditions were determined. In addition, load 
flow on the network revealed the amount of power transferred from one bus to another as well as the total power 
transferred by the network. Load flow studies reveals also the total losses on the network as well as the losses on 
each transmission line. Having done this, a Simulink model of the test network was realized in PSAT. The Simulink 
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model of the test network is very important as the compensating device need to be connected to the network to be 
able to determine its contribution in minimizing the real power loss of the network. Continuation power flow is then 
performed on the test network to determine the total real power loss of the uncompensated test network. The total 
real power loss of the network obtained before compensation with the interline Power flow controller (IPFC) was 
compared with the total real power loss of the network after compensation with IPFC. 

Continuation power flow also helped to extract possible (viable) locations (lines) for the IPFC placement for the 
realization of minimum total network real power loss in the network. Continuation power flow has the capacity to 
identify the weakest buses in a network. These weakest buses are usually the best positions for connecting 
compensation devices for maximum impact. Modeling of the IPFC that will be used for the compensation of the 
network for the total real power loss is very critical likewise the modeling of an artificial neural network (ANN) 
controller for determining the optimum size of the IPFC to be connected to the optimum location for maximum total 
real power loss reduction in the test network. After network compensation with IPFC, simulations are carried out in 
the test network to determine the overall performance of the technique used. 

Implementation of the Test Network Modelin PSAT Simulink 

The case study network was modeled in PSAT/Simulink as shown in figure 2 

 

Figure 2: Developed Simulink model of the 47-bus test network 

Determination of Possible Location for Placement of IPFC and Computation of ATC of Test Network 

To effectively reduce the total real power loss of the test network; the network compensator (IPFC) must be connected 
to the most vulnerable bus(es). The most vulnerable bus in the test network can be obtained by performing 
continuation power flow on the test network. The total network real power loss of the test system before and after 
compensation will be determined using load flow studies. 

Determination of the Equivalent Circuit Diagram of IPFC 

The schematic diagram of an IPFC is shown in figure 3. From figure 3, the two converters' equivalent electrical circuit 
model of figure 4 was derived. The two converter-based injection model of the IPFC shown in figure 5 was obtained 
from a further simplification of figure 3. 
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Figure 3: Schematic diagram of an IPFC (Source: Sreejith et al, 2013) 

 

Figure 4: Equivalent Circuit of Two Converter IPFC (Source: Sreejith et al, 2013) 

In figure 3, Vi, Vj, and Vkare the complex bus voltages at the buses i, j and k respectively, and they are defined as; 
𝑉𝑉𝑥𝑥 − 𝜃𝜃 = 𝑉𝑉𝑥𝑥∠𝜃𝜃𝑥𝑥  for 𝑋𝑋 = 𝑖𝑖, 𝑗𝑗,𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘      (1) 
Where 𝑉𝑉𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖 is the controllable series injected voltage source, defined as; 
𝑉𝑉𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖 < 𝜃𝜃𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖(𝑎𝑎 = 𝑗𝑗, 𝑘𝑘)      (2) 
Where 𝑍𝑍𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖 = (𝑎𝑎 = 𝑗𝑗, 𝑘𝑘) is the series coupling transformer impedance. 
The active and reactive power injections at each bus is determined as follows; 
𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 =  ∑ = 𝑗𝑗, 𝑘𝑘𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖 sin(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖) 𝑖𝑖     (3) 
𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 =  −∑ 𝑗𝑗,𝑘𝑘𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖 𝑖𝑖 cos(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖)     (4) 
𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖\𝑖𝑖 =  −𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖 sin(𝜃𝜃𝑖𝑖 –𝜃𝜃𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖)     (5) 
 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖 sin(𝜃𝜃𝑖𝑖 −  𝜃𝜃𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖)     (6) 
Where n = j,k 

 

Figure 5: Power injection model of two converter IPFC (Source: Eti-Ini et al., 2020) 
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Implementation of the Simulink Model of the IPFC Model in PSAT 

The Simulink model presented in this section was derived from the two-converter based injection model of IPFC 
shown in figure 5. The various component blocks are obtained from PSAT Simulink library. The component blocks 
used include: an AC PV generator, bus bars and pie model transmission line blocks. 

 

Figure 6: PSAT Simulink Based Injection Model Of IPFC 

Figure  presents the PSAT based Simulink model of the IPFC injection model proposed for compensating the test 
network for an improved ATC 
(P+ jQ)inj.i,(P+jQ)inj.j and (P+ jQ)inj.k are the voltages injected by the IPFC at buses I,j and k respectively. ZSeik and ZSeij 

are the impedances of the two coupling transformers in the IPFC schematic diagram of figure 5. For optimum 
compensation and maximum ATC enhancement, the sizes of the injection generators in figure 6 shall be determined 
optimally using Artificial Neural network (ANN). 

Creating and Training an Ann Controllers for Determining the Optimum Size and Location of the IPFC Based 
Compensator 

In this work, two ANN controllers were created and trained. The controllers are The ANN optimum size predictor 
and the ANN optimum location predictor. The Optimum size predictor determines the optimum size of the IPFC for 
each location while the optimum location predictor determines the best location for the placement of the IPFC 
based on the location that gave the minimum total network loss. The ANN controllers were developed to help 
determine the optimum size and optimum location for the installation of the IPFC so as to enhance the network 
voltage profile, improve its ATC and reduce total network losses. 

To achieve this, repeated load flow was carried out on 5 selected possible locations of IPFC to determine the 
optimum IPFC size and optimum power loss on the lines. The result obtained from the selected five lines were then 
used to train the ANN controllers to predict optimum IPFC sizes and minimum loss at other possible locations. With 
the training data generated, the ANN controllers were then created, trained, and converted to the Simulink model 
for easy simulation. 

Creating and Training the ANN optimum Size Predictor 

The ANN optimum size predictor is created using the fitting application of the ANN toolbox in Simulink/MATLAB. 
The ANN architecture of figure 7 shows that the ANN optimum size predictor has three inputs (real power loss, 
reactive power loss, and voltage drop on the five-line). The target is the corresponding optimum IPFC size obtained 
for the respective five lines). As can be seen from the architecture, the chosen number of hidden layers is 10 while 
Levenberg Marquardt was used as a training algorithm. The training data is divided into three parts, 70% is used for 
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actual training, 15% was used for testing and the remaining 15% is used for validation. The ANN training environment 
is shown in figure 7 

 

Figure 7: ANN Optimum Size Predictor Architecture 
 

 

Figure 8: ANN Size Predictor Training Environment in Simulink 

From the training performance plot, the training converged after 5 iterations with a best validation performance 
mean square error (MSE) of 6.9551e-15. The closeness obtained MSE error to zero suggests that the training 
completed with negligible error. This is also confirmed by the one to one (between input and target data) value 
obtained in the regression plot. After a successful training, the ANN optimum size predictor model is then converted 
to a Simulink model for use in predicting the optimum sizes of IPFC at various lines in the test network. 

 

Figure 9: Deployed ANN Size Prediction Model 
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The deployed Simulink model of the ANN optimum size predictor is shown in figure 10 shows the internal structure 
of the ANN Simulink model. 

 

Figure 10: Internal Structure of the Deployed ANN Simulink Model 

Creating And Training of the ANN Optimum Locator 

Having developed the ANN optimum size predictor that computes the optimum size of IPFC for each line, it is also 
necessary to determine which of the lines cause optimum loss reduction when optimum-sized IPFC is installed. To 
achieve this, there is a need to create and train an ANN loss predictor for each line if an optimally sized IPFC were 
to be installed. The input data for the ANN loss predictor will be the characteristics (line losses and voltage drop) of 
the five lines used for the ANN optimum size predictor. The determined optimum IPFC size for the selected five lines 
(that under-went repeated load flow) will be an additional variable in the input data. There is therefore a total of 
four inputs derived from the five lines that under-went repeated load flow. 

The ANN optimum loss predictor is created using the fitting application of the ANN toolbox in Simulink/Matlab. The 
ANN optimum loss predictor has four inputs including real power loss, reactive power loss, voltage drop, and 
optimum IPFC size for the lines used. The single target (output) is the minimum total network real power loss when 
the optimal IPFC is connected to a line 

The chosen number of hidden layers is 10 while Levenberg Marquardt was used as a training algorithm. As seen in 
the training of optimum size predictor, the training data is also divided into three parts, 70%is used for actual 
training, 15% was used for testing and the remaining 15% is used for validation. 

From the training performance plot, it is evident that the training converged after 7 iterations with the best 
validation performance mean square error (MSE) of 1.0401e-19. The one-to-one (between input and target data) 
value obtained in the regression plot of appendix B4 validates the impressive MSE result obtained during the 
training. After successful training, the ANN optimum loss predictor model is then converted to a Simulink model. 

Progressive Connection of the Optimally Sized IPFCs to the Best Locations for the Determination of Exact Overall 
Optimum Location and Size of IPFC 

The optimum sized and located IPFC is then connected to the most preferred location (line with lowest total network 
Power loss). Load flow is performed to determine the network total loss. An optimally sized IPFC is then connected 
to the next preferred location. Load flow is performed. Total network loss is also determined. The result obtained is 
compared with the one obtained from the first location to confirm an increase a reduction in total power loss. This 
process is repeated for a few more locations to attain a point where the optimum loss reduction is obtained, such 
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that any further addition of IPFC will cause increase in total network loss. Table 4.46 shows the results of these 
simulations and the point optimum total network loss is reached 

Results and Discussions 

Result of Characterization of the Test Network 

Table 1: Voltage Magnitude and Angle, Active and Reactive Power at Buses After Load Flow 
Bus V(pu) phase 

(rad) 
Pgen 
(pu) 

Q gen 
(pu) 

Pload 
(pu) 

Q load 
(pu) 

ALAOJI 0.99774 -0.10303 0 0 3 -0.69 
SAPELLE 1 -0.04478 4 -5.36141 0 0 
AKANGBA 0.99512 -0.01606 0 0 2.04 0.95 
LEKKI 1.00382 -0.01105 0 0 1.2 0.62 
SAKETE 0.99039 -0.03045 0 0 2.04 0.95 
AJA 1.00167 -0.00156 0 0 1.2 0.62 
JEBBA 1 -0.02637 2.78 0.59784 0 0 
KADUNA 0.97005 -0.11781 0 0 2 0.97 
New Haven 0.99376 -0.09566 0 0 1.13 0.56 
OKEAROTS 0.99724 -0.00923 0 0 2.04 0.95 
SHIRORO 1 -0.07242 2 6.071 0 0 
UGWUAJI 0.98481 -0.11271 0 0 1.6 0.95 
ADIABOR 0.99825 -0.11346 0 0 1.82 0.67 
AFAM 1 -0.09758 4.5 -2.54152 0 0 
AIYEDE 0.99641 -0.02798 0 0 1.39 0.69 
AJAOKUTA 1.00285 -0.05126 0 0 0.64 0.323 
ALADJA 0.99979 -0.04764 0 0 1.82 0.67 
ASABA 1.01252 -0.06247 0 0 0.15 0.076 
BENIN 1.006 -0.05012 0 0 1.57 0.8 
DAMATURU  0.89612 -0.19033 0 0 1 0.4 
DELTA 1 -0.0467 2.5 -3.21335 0 0 
EGBIN 1 0 25.04821 -5.51645 0 0 
GEREGU 1 -0.04508 2 -1.17521 0 0 
GOMBE 0.89641 -0.18913 0 0 1.6 0.95 
GWAGWA 0.99999 -0.07123 0 0 2.03 1.02 
GANMO 0.99472 -0.0334 0 0 1.39 0.69 
IHOVBO 1 -0.03304 2 -5.38415 0.15 0.076 
IKEJAW 0.99573 -0.01507 0 0 4.29 2.48 
IKOTEKPENE 0.99556 -0.10769 0 0 1.82 0.67 
JALINGO 0.88258 -0.19778 0 0 1 0.3 
JEBBATS 0.99973 -0.02679 0 0 0.15 0.076 
JOS 0.95042 -0.1416 0 0 2.5 1.25 
KAINJI 1 -0.01502 5.78 0.02132 0 0 
KANO 0.96249 -0.12991 0 0 2 0.97 
KANTANPE 0.99872 -0.07208 0 0 2.03 1.02 
KEBBI 0.99846 -0.01841 0 0 1.2 0.4 
LOKOJA 1.0019 -0.06148 0 0 0.15 0.076 
MAIDUGURI 0.8933 -0.19755 0 0 1 0.3 
MAKURDI 0.96322 -0.13168 0 0 1.8 0.65 
ODUKPANI 1 -0.11233 2.5 1.25492 1.82 0.67 
OKO OBA 1.00029 -0.00303 0 0 1.82 0.67 
OKPAI 1 -0.07028 2.5 -1.29942 0 0 
OLORUNSOGO 1 -0.01229 2.5 -0.28509 0 0 
ONITSHA 1.00307 -0.07795 0 0 1.15 0.42 
OSHOBO 0.99601 -0.03037 0 0 2.01 1.37 
OWERRI 0.99243 -0.11836 0 0 2.04 0.95 
YOLA 0.88392 -0.19415 0 0 1 4 
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Figure 11: Bar Chart Showing Voltage Magnitude of Test Network Buses After Load Flow. 

From table 1 and figure 11, it can be observed that five buses (Maiduguri, Yola, Gombe, Jalingo and Adamawa) fell 
below the IEEE acceptable range of 0.95pu to 1.05pu for healthy buses. This result suggests that the system was not 
stable as power network stability requires that all buses maintain a voltage level within the above stated IEEE 
acceptable range. The result of the continuation power flow revealed that the test network recorded a total network 
real power line loss of 0.5182pu. To reduce this network line loss and enhance voltage profile and stability, there is 
need to improve the network Available Transfer Capability (ATC). To enhance the network ATC for an improved 
voltage profile and reduced line losses, this research proposes the connection of Interline Power Flow Controllers 
(IPFC) at vulnerable buses. To be able to evaluate the impact of the chosen technique on the enhancement of the 
test network ATC, there is need to compute the network’s ATC before applying the proposed technique on the 
network. 

Results of ANN Model Simulations 

To obtain the optimum size of IPFC for each line in the network, the ANN optimum size predictor was simulated. To 
obtain the optimum IPFC size for Yola-Gombe line for instance, the real and reactive power loss and the voltage 
difference between the two lines were fed to the input of the ANN optimum size predictor. On simulation, the result 
obtained was the predicted optimum size of IPFC for the Yola-Gombe line. This simulation is done for the rest of the 
47 buses to obtain their corresponding optimum IPFC sizes. The result of the simulation is presented in table 2 and 
figure 12 0.8pu to 1.6pu. To determine the which of these buses to select as the best location to connect the IPFC 
for minimum loss and optimum ATC, another simulation will be carried out on each bus to determine the total 
network minimum loss that will result assuming the predicted optimum IPFC size were to be connected independent 
of each other. 
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Table 2: Simulation result showing ANN inputs and Optimum IPFC sizes for all Possible Locations 
From Bus To Bus Line P Loss Q Loss VD(pu) SIZE (pu) 
DAMATURU GOMBE 47 0.0027 -0.41633 0.00029 1 
DAMATURU MAIDUGURI 38 0.00798 0.06833 0 0.8715 
YOLA JALINGO 37 0.00379 0.03689 0.00134 0.87 
UGWUAJI IKOT EKPENE 53 0.06884 -0.37645 0.01075 1.09 
KANO KADUNA 10 0.01901 0.16271 0.00756 0.8717 
JOS KADUNA 5 0.13371 1.14414 0.01963 1.18 
UGWUAJI New Haven 8 0.07995 0.55641 0.00895 1.049 
YOLA GOMBE 1 0.057 0.63733 0.01249 0.8692 
MAKURDI UGWUAJI 12 0.25514 1.77558 0.02159 1.3 
JOS MAKURDI 34 0.10467 0.88792 0.03868 1.024 
GOMBE JOS 17 0.66609 5.67931 0.05401 1.442 
KADUNA SHIRORO 3 0.36752 1.50829 0.02995 1.24 

 

 

Figure 13: Bar chart showing predicted optimum IPFC sizes for possible best IPFC locations of the test network 

Figure 14: Bar chart showing predicted optimum IPFC size and corresponding minimum total network for each line 
when optimally sized IPFC is connected to each line independently. 
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Table 3: Loss Obtained from Progressive Connection of IPFC at the Best Locations 
IPFC Location Total Network Real Power Loss (pu) 

NIL 0.51821 
DAMATURU-GOMBE 0.21186 
DAMATURU-MAIDUGURI 0.43253 
YOLA-JALINGO 0.96889 
UGWUAJI-IKOTEKPENE 1.45661 

 

Figure 15: Load Flow Result After IPFC Based Compensation 

Figure 16: Bar Chart Showing Total Network Losses with and Without IPFC 
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Conclusion 

This research work targeted at enhancing the Available Transfer Capability (ATC) of the Nigeria 47 bus 330kVA 
transmission line network using an optimally sized and placed interline Power Flow Controller. To achieve this, Load 
flow and continuation load flow was performed on the test network to determine the test network ATC, total 
network real power loss, and voltage profile. The continuation power flow also helped to determine the best likely 
optimal positions for the IPFC controllers. An ANN controller (optimum size predictor) was then created and trained 
to predict the optimum IPFC sizes for the identified likely best locations. Another ANN controller (ANN optimum 
location predictor) was also created and trained to determine the optimum location for the likely best locations. 
The ANN models are then simulated to determine the optimum IPFC size and optimum location. With the Damaturu-
Gombe line chosen as the best location with an optimum IPFC size of 1.0pu, load flow and continuation load flow 
were performed again to determine the reduction in total network real power loss and the improvement of the 
proposed method on the network ATC and voltage profile. 

The connection of an optimally sized IPFC at an optimal location increased test network ATC from 8.94pu to 54.26pu. 
This represents an increase of 45.32pu. This impressive result is a result of the excellent compensation effect of the 
optimally sized and best-located IPFC. Also, as evident in figure 16, the connection of an optimally sized IPFC at an 
optimal location reduced total network real power loss from 0.51821pu to 0.21186pu. This represents a reduction 
of 0.306pu in total network loss. 
It can also be observed from figure 15 that the connection of an optimally sized IPFC at an optimal location increased 
the voltage profile of all 5 weak buses above the acceptable voltage profile limit of 0.95pu. 
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